Κορυφώνεται η αγωνία για τις τελικές(?)
ανακοινώσεις σχετικά με το σωμάτιο του Higgs.
Καθώς οι τεχνικοί όροι της
Φυσικής υψηλών ενεργειών «δίνουν και παίρνουν» στα μέσα ενημέρωσης, και
είναι πολύ πιθανό ο αναγνώστης να αισθάνεται ήδη μπερδεμένος,
ας προσπαθήσουμε να βάλουμε κάποια τάξη στα πράγματα περιγράφοντας το θεωρητικό background της υπόθεσης με όσο πιο απλά λόγια γίνεται. Κάτι σαν παραμύθι, δηλαδή!
ας προσπαθήσουμε να βάλουμε κάποια τάξη στα πράγματα περιγράφοντας το θεωρητικό background της υπόθεσης με όσο πιο απλά λόγια γίνεται. Κάτι σαν παραμύθι, δηλαδή!
Η κρυμμένη απλότητα της Φύσης...
Με βάση τη φαινομενολογία που μας προσφέρει ο κόσμος των χαμηλών ενεργειών στον οποίο ζούμε, μπορούμε να διακρίνουμε τέσσερα είδη δυνάμεων (ή αλληλεπιδράσεων) μεταξύ των στοιχειωδών σωματίων της ύλης:
Με τις περίπλοκες μαθηματικές εξισώσεις του, ο Maxwell περιέγραψε το ηλεκτρικό και το μαγνητικό πεδίο σαν «δύο όψεις του ίδιου νομίσματος», αφού το ένα μπορεί να «μεταμορφώνεται» (να μετασχηματίζεται) στο άλλο, ανάλογα με τον τρόπο που τα παρατηρούμε (αυτή ήταν και η αφετηρία της σκέψης του Einstein όταν πρότεινε την Ειδική Θεωρία της Σχετικότητας). Έτσι, αντί για δύο ξεχωριστά πεδία, ηλεκτρικό και μαγνητικό, μιλάμε για ένα ενιαίο ηλεκτρομαγνητικό πεδίο.
Είναι ενδιαφέρον εδώ να παρατηρήσουμε ότι, σε ό,τι αφορά την σχετική ισχύ τους, η ηλεκτρική και η μαγνητική δύναμη αρχίζουν να γίνονται ισοδύναμες μεταξύ τους στο όριο των υψηλών ταχυτήτων (άρα υψηλών ενεργειών) των ηλεκτρικών φορτίων που αλληλεπιδρούν. Αυτή είναι μια πρώτη ένδειξη πως η απλότητα της Φύσης αποκαλύπτεται υπό την προϋπόθεση ότι για την πειραματική παρατήρησή της διατίθεται η κατάλληλη ενέργεια!
Ένα από τα μεγαλύτερα επιτεύγματα της Φυσικής επιστήμης κατά τον εικοστό αιώνα ήταν η ανακάλυψη ότι, με παρόμοιο τρόπο, η ηλεκτρομαγνητική και η ασθενής αλληλεπίδραση επίσης αποτελούν δύο όψεις (δύο εκφάνσεις) μιας ενιαίας δύναμης, της ηλεκτρασθενούς. Ανοιχτή παραμένει η φιλοδοξία της εύρεσης μιας ακόμα μεγαλύτερης ενοποίησης που να περιλαμβάνει στο σχήμα και την ισχυρή αλληλεπίδραση (η βαρύτητα είναι μια άλλη, «πονεμένη» ιστορία, αφού, σε αντίθεση με τις υπόλοιπες δυνάμεις, δεν δείχνει να υποτάσσεται εύκολα στους κανόνες της Κβαντικής Φυσικής…).
Το πρόβλημα είναι πως, όπως αναφέραμε πιο πάνω, όσο πιο απλή εμφανίζεται η Φύση μέσα απ’ αυτά τα διαδοχικά στάδια ενοποίησης, τόσο πιο ακριβό «εισιτήριο» καλείται να πληρώσει ο θεατής που θα γίνει μάρτυρας αυτής της απλότητας. Και το εισιτήριο αυτό λέγεται ενέργεια! Δηλαδή, η υποτιθέμενη απλότητα της Φύσης μπορεί να αποκαλυφθεί μόνο μέσα από πειράματα πολύ υψηλών ενεργειών. Και, όσο μεγαλύτερος είναι ο βαθμός απλότητας που θέλουμε να αναδείξουμε, τόσο περισσότερη ενέργεια απαιτείται. Αυτό εξηγεί, άλλωστε, γιατί δαπανώνται τέτοια τεράστια ποσά για την κατασκευή όλο και μεγαλύτερων επιταχυντών στοιχειωδών σωματίων, όπως ο Large Hadron Collider (LHC) στο CERN στη Γενεύη. Η άλλη πλευρά του λόφου…
Ένα απλό παράδειγμα ίσως μας βοηθήσει να κατανοήσουμε καλύτερα αυτά που αναφέρθηκαν πιο πάνω: Φανταστείτε ότι κατοικείτε στους πρόποδες ενός λόφου που βρίσκεται στο μέσο μιας πόλης, της οποίας τα σπίτια είναι όμοια μεταξύ τους και ομοιόμορφα κατανεμημένα γύρω απ’ το λόφο. Από το σημείο που βρίσκεστε μπορείτε να βλέπετε μόνο ένα μέρος της πόλης, αφού ο λόφος σάς κρύβει την άλλη πλευρά της. Έτσι, για σας υπάρχει η «δική σας» γειτονιά και η «άλλη», στην αντίθετη πλευρά του λόφου. Η αντίληψή σας για την πόλη, απ’ το σημείο που βρίσκεστε, είναι αποσπασματική και ασύμμετρη…
Τώρα, υποθέστε ότι βρίσκετε το κουράγιο (δηλαδή, την απαιτούμενη ενέργεια) να ανεβείτε στην κορυφή του λόφου. Από εκεί πια μπορείτε να βλέπετε ολόγυρα κάθε γειτονιά της πόλης. Η θέα τώρα είναι καθολική και απόλυτα συμμετρική (όπως κι αν περιστρέψετε το σώμα σας, πάντα θα αντικρίζετε κάποια περιοχή της πόλης, και, σύμφωνα με την υπόθεση που κάναμε, όλες οι περιοχές είναι όμοιες μεταξύ τους). Αυτό που πρέπει να συγκρατήσουμε είναι ότι, η πορεία από την πολυπλοκότητα της ασυμμετρίας προς την απλότητα της συμμετρίας απαιτεί δαπάνη ενέργειας. Η συμμετρία πίσω απ’ τη δύναμη…
Με τα σημερινά δεδομένα, τα στοιχειώδη σωμάτια και οι μεταξύ τους αλληλεπιδράσεις (δυνάμεις) περιγράφονται από το λεγόμενο Καθιερωμένο Μοντέλο (Standard Model), το οποίο αποτελεί σύνθεση όλων των πειραματικά επιβεβαιωμένων θεωριών για την δομή της ύλης σε θεμελιώδες επίπεδο. Για την ακρίβεια, υπάρχει ακόμα ένα ζήτημα που μένει να επιβεβαιωθεί πειραματικά: ο μηχανισμός με τον οποίο πιστεύουμε ότι τα σωμάτια (και, μακροσκοπικά, η ύλη) αποκτούν μάζα (ή, αν προτιμάτε, αδράνεια). Μα, θα ρωτήσετε, γιατί να μη δεχθούμε απλά ότι η μάζα είναι μια ιδιότητα που το κάθε σωμάτιο φέρει εξαρχής από τη στιγμή της δημιουργίας του, κάτι σαν «προίκα» απ’ την ίδια τη Φύση; Για να κατανοήσουμε το πρόβλημα, θα πρέπει να ξαναγυρίσουμε στην έννοια της συμμετρίας…
Στον μικρόκοσμο, η συμμετρία είναι κάτι παραπάνω από θέμα απλής αισθητικής: είναι αυτή που καθορίζει το είδος των αλληλεπιδράσεων μεταξύ των σωματίων. Δηλαδή, πίσω από κάθε μορφή αλληλεπίδρασης κρύβεται και μια αντίστοιχη μορφή συμμετρίας. Για παράδειγμα, η ηλεκτρομαγνητική αλληλεπίδραση μεταξύ ηλεκτρικά φορτισμένων σωματιδίων σχετίζεται με την συμμετρικότητα (αμεταβλητότητα στη μορφή) των θεμελιωδών εξισώσεων του Ηλεκτρομαγνητισμού, κάτω από συγκεκριμένους αφηρημένους μαθηματικούς μετασχηματισμούς των συναρτήσεων που περιγράφουν το ηλεκτρομαγνητικό πεδίο και τα σωμάτια που αλληλεπιδρούν μέσω αυτού.
Το ίδιο το ηλεκτρομαγνητικό πεδίο, κατά την κβαντική θεωρία, αντιπροσωπεύεται από τα δικά του «σωμάτια», τα φωτόνια. Μπορούμε να σκεφτούμε τα σωμάτια αυτά σαν μικρές σφαίρες που εκτοξεύει το ένα φορτίο στο άλλο, κάνοντάς το να αισθανθεί την παρουσία του. Τα φωτόνια είναι τα κβάντα (οι πλέον στοιχειώδεις ποσότητες) του ηλεκτρομαγνητικού πεδίου που «κοινωνούν» την ηλεκτρομαγνητική αλληλεπίδραση ανάμεσα σε ηλεκτρικά φορτισμένα σωμάτια.
Στη γλώσσα της συμμετρίας, το φωτόνιο παίζει τον ρόλο του «ταχυδρόμου» που ενημερώνει κάθε παρατηρητή απ’ τον οποίο διέρχεται, για τις λεπτομέρειες των μαθηματικών μετασχηματισμών συμμετρίας που υπέστησαν οι συναρτήσεις που αντιπροσωπεύουν τα σωμάτια σε γειτονικά σημεία του χώρου (σωστότερα, του χωροχρόνου).
Πρέπει, όμως, να λάβουμε υπόψη έναν σημαντικό περιορισμό: Οι θεωρίες που συσχετίζουν τις αλληλεπιδράσεις των σωματίων με υποκείμενες συμμετρίες, θέτουν ως προϋπόθεση τα κβάντα του πεδίου που ευθύνεται για την αλληλεπίδραση να έχουν μηδενική μάζα! Αυτό ισχύει πράγματι για τα φωτόνια (φορείς της ηλεκτρομαγνητικής αλληλεπίδρασης), όχι όμως και για τα κβάντα του πεδίου που σχετίζεται με την ασθενή αλληλεπίδραση. Έτσι, η αλληλεπίδραση αυτή θα κινδύνευε να μείνει έξω απ’ το παιχνίδι της συμμετρίας, και η θεωρητική εξήγηση της ενοποίησης της ασθενούς δύναμης με τον ηλεκτρομαγνητισμό (ηλεκτρασθενής δύναμη) θα οδηγείτο σε αδιέξοδο… αν δεν έσωζε την παρτίδα ένα μυστηριώδες πεδίο!
Ο «ξενέρωτος» καθηγητής και η δημοφιλής συνοδός του!
Τη λύση στο αδιέξοδο της μάζας δίνει το πεδίο Higgs. Το πεδίο αυτό μας επιτρέπει να θεωρούμε τα κβάντα όλων των αλληλεπιδράσεων σαν σωμάτια που αυτά καθαυτά δεν έχουν μάζα, φαίνεται όμως σ’ εμάς ότι έχουν εξαιτίας της αλληλεπίδρασής τους με το πεδίο Higgs, ή, αν προτιμάτε, με το κβάντο του πεδίου αυτού, το περίφημο μποζόνιο Higgs. Γενικά μιλώντας, σύμφωνα με την θεωρία του Peter Higgs (καθώς και άλλων ερευνητών που εργάστηκαν ανεξάρτητα πάνω στο ίδιο πρόβλημα), η μάζα όλων των στοιχειωδών σωματίων είναι μια επίκτητη (φαινομενική) ιδιότητα που προκύπτει λόγω της αλληλεπίδρασής τους με το πανταχού παρόν πεδίο Higgs. Θα μπορούσαμε, δηλαδή, να πούμε πως, αν το πεδίο αυτό «έσβηνε» ξαφνικά (όπως υποθέτουμε ότι ίσχυε για κάποια χρονική περίοδο μετά το Big Bang, λόγω των ακραίων θερμοκρασιών), όλα τα σωμάτια θα εμφανίζονταν χωρίς μάζα (δεν θα είχαν αδράνεια, δηλαδή δεν θα πρόβαλαν αντίσταση στη μεταβολή της κινητικής τους κατάστασης).
Αυτό, σύμφωνα με την Θεωρία της Σχετικότητας, θα σήμαινε ότι κάθε σωμάτιο θα ταξίδευε με την ταχύτητα του φωτός. Γνωρίζουμε, βέβαια, ότι κάτι τέτοιο δεν ισχύει στ’ αλήθεια (με εξαίρεση το φωτόνιο). Ένα παράδειγμα και πάλι θα βοηθήσει: Φανταστείτε μια χοροεσπερίδα που διοργανώνουν οι φοιτητές ενός πανεπιστημίου. Στη μεγάλη σάλα βρίσκεται ένα μεγάλο πλήθος φοιτητών που είναι ομοιόμορφα κατανεμημένοι σε όλη την έκταση του χώρου. Ας πούμε ότι το πλήθος αυτό των φοιτητών είναι το «πεδίο Higgs», και οι εν λόγω νεαροί αποτελούν τα «μποζόνια Higgs» (τα κβάντα του πεδίου).
Κάποια στιγμή κάνει την εμφάνισή του στο χορό ένας «ξενέρωτος» καθηγητής (π.χ., ο γράφων). Κανείς δεν του δίνει σημασία καθώς μπαίνει στο δωμάτιο, κι έτσι αυτός μπορεί να κινείται ανενόχλητα και να επιταχύνεται κατά βούληση. Είναι ένα «σωμάτιο» χωρίς μάζα (χωρίς αδράνεια), αφού το πεδίο Higgs και τα κβάντα του (οι φοιτητές) δεν καταδέχονται ν’ ασχοληθούν μαζί του ώστε να προβάλουν εμπόδια στην κίνησή του! Φανταστείτε τώρα ότι στο χορό καταφθάνει καθυστερημένα η ωραία συνοδός του καθηγητή. Καθώς τραβάει την προσοχή των φοιτητών, σπεύδουν όλοι να την προσεγγίσουν, δυσχεραίνοντας την κίνησή της μέσα στη σάλα. Έτσι, για να επιταχύνει το βήμα της θα χρειαστεί να καταβάλει δύναμη: το πεδίο Higgs (οι φοιτητές) της προσέδωσε μάζα (αδράνεια).
Τώρα, αν υποθέσουμε πως οι φοιτητές γίνονταν αόρατοι, κάποιος εξωτερικός παρατηρητής θα μπορούσε να νομίσει ότι η αδράνεια αυτή είναι μια ιδιότητα που πρωτογενώς φέρει η ίδια η γυναίκα! Πιστεύουμε λοιπόν –μέχρις αποδείξεως του εναντίου- ότι η αδράνεια που εμφανίζουν όλα τα σώματα δεν είναι μια εγγενής ιδιότητά τους, αλλά οφείλεται στην αλληλεπίδρασή τους με το «αόρατο» πεδίο Higgs. Και το πεδίο αυτό θα γίνει «ορατό» μόλις ανακαλύψουμε το κβάντο του –το μποζόνιο Higgs!
Επίλογος
Όλα αυτά ακούγονται ωραία, υπό την προϋπόθεση ότι η θεωρία Higgs είναι σωστή και το σχετιζόμενο μποζόνιο υπαρκτό. Αν όντως υπάρχει, θα είναι πολύ βαρύ (αφού και το ίδιο έχει μάζα, και μάλιστα πολύ μεγάλη, καθώς αλληλεπιδρά ισχυρά με το ίδιο του το πεδίο!), γι’ αυτό και η δημιουργία του στο εργαστήριο απαιτεί πολύ υψηλές ενέργειες (θυμηθείτε την περίφημη σχέση του Einstein, που καθιστά τη μάζα και την ενέργεια ισοδύναμες). Τέτοιες ενέργειες πράγματι διαθέτει ο επιταχυντής LHC στο CERN. Και όλοι (ή σχεδόν όλοι…) εύχονται οι προσπάθειες των επιστημόνων –και τα χρήματα που δαπανήθηκαν- να έχουν αίσιο αποτέλεσμα, που δεν μπορεί να είναι άλλο από την τελική επιβεβαίωση της ύπαρξης του «δύστροπου» μποζονίου. Σε αντίθετη περίπτωση, ίσως χρειαστεί να ξαναγράψουμε απ’ την αρχή μεγάλο μέρος της Φυσικής του δεύτερου μισού του 20ού αιώνα!
Κώστας Παπαχρήστου
Με βάση τη φαινομενολογία που μας προσφέρει ο κόσμος των χαμηλών ενεργειών στον οποίο ζούμε, μπορούμε να διακρίνουμε τέσσερα είδη δυνάμεων (ή αλληλεπιδράσεων) μεταξύ των στοιχειωδών σωματίων της ύλης:
(1) Τις δυνάμεις
βαρύτητας (στις οποίες οφείλεται το βάρος των σωμάτων, αλλά και η
καθορισμένη κίνηση της Γης γύρω απ’ τον Ήλιο),
(2) τις
ηλεκτρομαγνητικές δυνάμεις (τέτοια είναι, π.χ., η τριβή ανάμεσα στις δύο
παλάμες μας όταν σύρουμε τη μία πάνω στην άλλη),
(3) τις ισχυρές δυνάμεις (χάρη στις οποίες διατηρεί την συνεκτικότητά του ο πυρήνας ενός ατόμου), και
(4) τις ασθενείς
δυνάμεις (ευθύνονται για μια σειρά διεργασιών που λαμβάνουν χώρα στον
ατομικό πυρήνα). Υπάρχουν ενδείξεις, όμως, ότι η Φύση είναι στην
πραγματικότητα πολύ πιο απλή απ’ όσο φαίνεται.
Για παράδειγμα, πριν την συστηματική
θεωρητική διατύπωση των νόμων του ηλεκτρομαγνητισμού από τον James Clerk
Maxwell (1831-1879), ο ηλεκτρισμός και ο μαγνητισμός αντιμετωπίζονταν
σαν δύο ξεχωριστά και ανεξάρτητα φυσικά φαινόμενα. Αυτό ενισχύθηκε και
από την προφανή διαφορετικότητα ανάμεσα στις ιδιότητες των ηλεκτρικών
και των μαγνητικών δυνάμεων.Με τις περίπλοκες μαθηματικές εξισώσεις του, ο Maxwell περιέγραψε το ηλεκτρικό και το μαγνητικό πεδίο σαν «δύο όψεις του ίδιου νομίσματος», αφού το ένα μπορεί να «μεταμορφώνεται» (να μετασχηματίζεται) στο άλλο, ανάλογα με τον τρόπο που τα παρατηρούμε (αυτή ήταν και η αφετηρία της σκέψης του Einstein όταν πρότεινε την Ειδική Θεωρία της Σχετικότητας). Έτσι, αντί για δύο ξεχωριστά πεδία, ηλεκτρικό και μαγνητικό, μιλάμε για ένα ενιαίο ηλεκτρομαγνητικό πεδίο.
Είναι ενδιαφέρον εδώ να παρατηρήσουμε ότι, σε ό,τι αφορά την σχετική ισχύ τους, η ηλεκτρική και η μαγνητική δύναμη αρχίζουν να γίνονται ισοδύναμες μεταξύ τους στο όριο των υψηλών ταχυτήτων (άρα υψηλών ενεργειών) των ηλεκτρικών φορτίων που αλληλεπιδρούν. Αυτή είναι μια πρώτη ένδειξη πως η απλότητα της Φύσης αποκαλύπτεται υπό την προϋπόθεση ότι για την πειραματική παρατήρησή της διατίθεται η κατάλληλη ενέργεια!
Ένα από τα μεγαλύτερα επιτεύγματα της Φυσικής επιστήμης κατά τον εικοστό αιώνα ήταν η ανακάλυψη ότι, με παρόμοιο τρόπο, η ηλεκτρομαγνητική και η ασθενής αλληλεπίδραση επίσης αποτελούν δύο όψεις (δύο εκφάνσεις) μιας ενιαίας δύναμης, της ηλεκτρασθενούς. Ανοιχτή παραμένει η φιλοδοξία της εύρεσης μιας ακόμα μεγαλύτερης ενοποίησης που να περιλαμβάνει στο σχήμα και την ισχυρή αλληλεπίδραση (η βαρύτητα είναι μια άλλη, «πονεμένη» ιστορία, αφού, σε αντίθεση με τις υπόλοιπες δυνάμεις, δεν δείχνει να υποτάσσεται εύκολα στους κανόνες της Κβαντικής Φυσικής…).
Το πρόβλημα είναι πως, όπως αναφέραμε πιο πάνω, όσο πιο απλή εμφανίζεται η Φύση μέσα απ’ αυτά τα διαδοχικά στάδια ενοποίησης, τόσο πιο ακριβό «εισιτήριο» καλείται να πληρώσει ο θεατής που θα γίνει μάρτυρας αυτής της απλότητας. Και το εισιτήριο αυτό λέγεται ενέργεια! Δηλαδή, η υποτιθέμενη απλότητα της Φύσης μπορεί να αποκαλυφθεί μόνο μέσα από πειράματα πολύ υψηλών ενεργειών. Και, όσο μεγαλύτερος είναι ο βαθμός απλότητας που θέλουμε να αναδείξουμε, τόσο περισσότερη ενέργεια απαιτείται. Αυτό εξηγεί, άλλωστε, γιατί δαπανώνται τέτοια τεράστια ποσά για την κατασκευή όλο και μεγαλύτερων επιταχυντών στοιχειωδών σωματίων, όπως ο Large Hadron Collider (LHC) στο CERN στη Γενεύη. Η άλλη πλευρά του λόφου…
Ένα απλό παράδειγμα ίσως μας βοηθήσει να κατανοήσουμε καλύτερα αυτά που αναφέρθηκαν πιο πάνω: Φανταστείτε ότι κατοικείτε στους πρόποδες ενός λόφου που βρίσκεται στο μέσο μιας πόλης, της οποίας τα σπίτια είναι όμοια μεταξύ τους και ομοιόμορφα κατανεμημένα γύρω απ’ το λόφο. Από το σημείο που βρίσκεστε μπορείτε να βλέπετε μόνο ένα μέρος της πόλης, αφού ο λόφος σάς κρύβει την άλλη πλευρά της. Έτσι, για σας υπάρχει η «δική σας» γειτονιά και η «άλλη», στην αντίθετη πλευρά του λόφου. Η αντίληψή σας για την πόλη, απ’ το σημείο που βρίσκεστε, είναι αποσπασματική και ασύμμετρη…
Τώρα, υποθέστε ότι βρίσκετε το κουράγιο (δηλαδή, την απαιτούμενη ενέργεια) να ανεβείτε στην κορυφή του λόφου. Από εκεί πια μπορείτε να βλέπετε ολόγυρα κάθε γειτονιά της πόλης. Η θέα τώρα είναι καθολική και απόλυτα συμμετρική (όπως κι αν περιστρέψετε το σώμα σας, πάντα θα αντικρίζετε κάποια περιοχή της πόλης, και, σύμφωνα με την υπόθεση που κάναμε, όλες οι περιοχές είναι όμοιες μεταξύ τους). Αυτό που πρέπει να συγκρατήσουμε είναι ότι, η πορεία από την πολυπλοκότητα της ασυμμετρίας προς την απλότητα της συμμετρίας απαιτεί δαπάνη ενέργειας. Η συμμετρία πίσω απ’ τη δύναμη…
Με τα σημερινά δεδομένα, τα στοιχειώδη σωμάτια και οι μεταξύ τους αλληλεπιδράσεις (δυνάμεις) περιγράφονται από το λεγόμενο Καθιερωμένο Μοντέλο (Standard Model), το οποίο αποτελεί σύνθεση όλων των πειραματικά επιβεβαιωμένων θεωριών για την δομή της ύλης σε θεμελιώδες επίπεδο. Για την ακρίβεια, υπάρχει ακόμα ένα ζήτημα που μένει να επιβεβαιωθεί πειραματικά: ο μηχανισμός με τον οποίο πιστεύουμε ότι τα σωμάτια (και, μακροσκοπικά, η ύλη) αποκτούν μάζα (ή, αν προτιμάτε, αδράνεια). Μα, θα ρωτήσετε, γιατί να μη δεχθούμε απλά ότι η μάζα είναι μια ιδιότητα που το κάθε σωμάτιο φέρει εξαρχής από τη στιγμή της δημιουργίας του, κάτι σαν «προίκα» απ’ την ίδια τη Φύση; Για να κατανοήσουμε το πρόβλημα, θα πρέπει να ξαναγυρίσουμε στην έννοια της συμμετρίας…
Στον μικρόκοσμο, η συμμετρία είναι κάτι παραπάνω από θέμα απλής αισθητικής: είναι αυτή που καθορίζει το είδος των αλληλεπιδράσεων μεταξύ των σωματίων. Δηλαδή, πίσω από κάθε μορφή αλληλεπίδρασης κρύβεται και μια αντίστοιχη μορφή συμμετρίας. Για παράδειγμα, η ηλεκτρομαγνητική αλληλεπίδραση μεταξύ ηλεκτρικά φορτισμένων σωματιδίων σχετίζεται με την συμμετρικότητα (αμεταβλητότητα στη μορφή) των θεμελιωδών εξισώσεων του Ηλεκτρομαγνητισμού, κάτω από συγκεκριμένους αφηρημένους μαθηματικούς μετασχηματισμούς των συναρτήσεων που περιγράφουν το ηλεκτρομαγνητικό πεδίο και τα σωμάτια που αλληλεπιδρούν μέσω αυτού.
Το ίδιο το ηλεκτρομαγνητικό πεδίο, κατά την κβαντική θεωρία, αντιπροσωπεύεται από τα δικά του «σωμάτια», τα φωτόνια. Μπορούμε να σκεφτούμε τα σωμάτια αυτά σαν μικρές σφαίρες που εκτοξεύει το ένα φορτίο στο άλλο, κάνοντάς το να αισθανθεί την παρουσία του. Τα φωτόνια είναι τα κβάντα (οι πλέον στοιχειώδεις ποσότητες) του ηλεκτρομαγνητικού πεδίου που «κοινωνούν» την ηλεκτρομαγνητική αλληλεπίδραση ανάμεσα σε ηλεκτρικά φορτισμένα σωμάτια.
Στη γλώσσα της συμμετρίας, το φωτόνιο παίζει τον ρόλο του «ταχυδρόμου» που ενημερώνει κάθε παρατηρητή απ’ τον οποίο διέρχεται, για τις λεπτομέρειες των μαθηματικών μετασχηματισμών συμμετρίας που υπέστησαν οι συναρτήσεις που αντιπροσωπεύουν τα σωμάτια σε γειτονικά σημεία του χώρου (σωστότερα, του χωροχρόνου).
Πρέπει, όμως, να λάβουμε υπόψη έναν σημαντικό περιορισμό: Οι θεωρίες που συσχετίζουν τις αλληλεπιδράσεις των σωματίων με υποκείμενες συμμετρίες, θέτουν ως προϋπόθεση τα κβάντα του πεδίου που ευθύνεται για την αλληλεπίδραση να έχουν μηδενική μάζα! Αυτό ισχύει πράγματι για τα φωτόνια (φορείς της ηλεκτρομαγνητικής αλληλεπίδρασης), όχι όμως και για τα κβάντα του πεδίου που σχετίζεται με την ασθενή αλληλεπίδραση. Έτσι, η αλληλεπίδραση αυτή θα κινδύνευε να μείνει έξω απ’ το παιχνίδι της συμμετρίας, και η θεωρητική εξήγηση της ενοποίησης της ασθενούς δύναμης με τον ηλεκτρομαγνητισμό (ηλεκτρασθενής δύναμη) θα οδηγείτο σε αδιέξοδο… αν δεν έσωζε την παρτίδα ένα μυστηριώδες πεδίο!
Ο «ξενέρωτος» καθηγητής και η δημοφιλής συνοδός του!
Τη λύση στο αδιέξοδο της μάζας δίνει το πεδίο Higgs. Το πεδίο αυτό μας επιτρέπει να θεωρούμε τα κβάντα όλων των αλληλεπιδράσεων σαν σωμάτια που αυτά καθαυτά δεν έχουν μάζα, φαίνεται όμως σ’ εμάς ότι έχουν εξαιτίας της αλληλεπίδρασής τους με το πεδίο Higgs, ή, αν προτιμάτε, με το κβάντο του πεδίου αυτού, το περίφημο μποζόνιο Higgs. Γενικά μιλώντας, σύμφωνα με την θεωρία του Peter Higgs (καθώς και άλλων ερευνητών που εργάστηκαν ανεξάρτητα πάνω στο ίδιο πρόβλημα), η μάζα όλων των στοιχειωδών σωματίων είναι μια επίκτητη (φαινομενική) ιδιότητα που προκύπτει λόγω της αλληλεπίδρασής τους με το πανταχού παρόν πεδίο Higgs. Θα μπορούσαμε, δηλαδή, να πούμε πως, αν το πεδίο αυτό «έσβηνε» ξαφνικά (όπως υποθέτουμε ότι ίσχυε για κάποια χρονική περίοδο μετά το Big Bang, λόγω των ακραίων θερμοκρασιών), όλα τα σωμάτια θα εμφανίζονταν χωρίς μάζα (δεν θα είχαν αδράνεια, δηλαδή δεν θα πρόβαλαν αντίσταση στη μεταβολή της κινητικής τους κατάστασης).
Αυτό, σύμφωνα με την Θεωρία της Σχετικότητας, θα σήμαινε ότι κάθε σωμάτιο θα ταξίδευε με την ταχύτητα του φωτός. Γνωρίζουμε, βέβαια, ότι κάτι τέτοιο δεν ισχύει στ’ αλήθεια (με εξαίρεση το φωτόνιο). Ένα παράδειγμα και πάλι θα βοηθήσει: Φανταστείτε μια χοροεσπερίδα που διοργανώνουν οι φοιτητές ενός πανεπιστημίου. Στη μεγάλη σάλα βρίσκεται ένα μεγάλο πλήθος φοιτητών που είναι ομοιόμορφα κατανεμημένοι σε όλη την έκταση του χώρου. Ας πούμε ότι το πλήθος αυτό των φοιτητών είναι το «πεδίο Higgs», και οι εν λόγω νεαροί αποτελούν τα «μποζόνια Higgs» (τα κβάντα του πεδίου).
Κάποια στιγμή κάνει την εμφάνισή του στο χορό ένας «ξενέρωτος» καθηγητής (π.χ., ο γράφων). Κανείς δεν του δίνει σημασία καθώς μπαίνει στο δωμάτιο, κι έτσι αυτός μπορεί να κινείται ανενόχλητα και να επιταχύνεται κατά βούληση. Είναι ένα «σωμάτιο» χωρίς μάζα (χωρίς αδράνεια), αφού το πεδίο Higgs και τα κβάντα του (οι φοιτητές) δεν καταδέχονται ν’ ασχοληθούν μαζί του ώστε να προβάλουν εμπόδια στην κίνησή του! Φανταστείτε τώρα ότι στο χορό καταφθάνει καθυστερημένα η ωραία συνοδός του καθηγητή. Καθώς τραβάει την προσοχή των φοιτητών, σπεύδουν όλοι να την προσεγγίσουν, δυσχεραίνοντας την κίνησή της μέσα στη σάλα. Έτσι, για να επιταχύνει το βήμα της θα χρειαστεί να καταβάλει δύναμη: το πεδίο Higgs (οι φοιτητές) της προσέδωσε μάζα (αδράνεια).
Τώρα, αν υποθέσουμε πως οι φοιτητές γίνονταν αόρατοι, κάποιος εξωτερικός παρατηρητής θα μπορούσε να νομίσει ότι η αδράνεια αυτή είναι μια ιδιότητα που πρωτογενώς φέρει η ίδια η γυναίκα! Πιστεύουμε λοιπόν –μέχρις αποδείξεως του εναντίου- ότι η αδράνεια που εμφανίζουν όλα τα σώματα δεν είναι μια εγγενής ιδιότητά τους, αλλά οφείλεται στην αλληλεπίδρασή τους με το «αόρατο» πεδίο Higgs. Και το πεδίο αυτό θα γίνει «ορατό» μόλις ανακαλύψουμε το κβάντο του –το μποζόνιο Higgs!
Επίλογος
Όλα αυτά ακούγονται ωραία, υπό την προϋπόθεση ότι η θεωρία Higgs είναι σωστή και το σχετιζόμενο μποζόνιο υπαρκτό. Αν όντως υπάρχει, θα είναι πολύ βαρύ (αφού και το ίδιο έχει μάζα, και μάλιστα πολύ μεγάλη, καθώς αλληλεπιδρά ισχυρά με το ίδιο του το πεδίο!), γι’ αυτό και η δημιουργία του στο εργαστήριο απαιτεί πολύ υψηλές ενέργειες (θυμηθείτε την περίφημη σχέση του Einstein, που καθιστά τη μάζα και την ενέργεια ισοδύναμες). Τέτοιες ενέργειες πράγματι διαθέτει ο επιταχυντής LHC στο CERN. Και όλοι (ή σχεδόν όλοι…) εύχονται οι προσπάθειες των επιστημόνων –και τα χρήματα που δαπανήθηκαν- να έχουν αίσιο αποτέλεσμα, που δεν μπορεί να είναι άλλο από την τελική επιβεβαίωση της ύπαρξης του «δύστροπου» μποζονίου. Σε αντίθετη περίπτωση, ίσως χρειαστεί να ξαναγράψουμε απ’ την αρχή μεγάλο μέρος της Φυσικής του δεύτερου μισού του 20ού αιώνα!
Κώστας Παπαχρήστου
by Αντικλείδι , http://antikleidi.wordpress.com
Σήμερα, 4 Ιουλίου, ανακοινώθηκε και επίσημα η ύπαρξη ενός σωματιδίου
που δύναται να είναι το μποζόνιο Higgs. Το σωματίδιο δηλαδή που είναι
υπεύθυνο για την ύπαρξη μάζας στην απουσία της οποίας δεν θα υπήρχε
βαρύτητα στο Σύμπαν.
Το εν λόγω σωματίδιο ανακαλύφθηκε στο πλαίσιο του πιο μεγαλεπήβολου
πειράματος των τελευταίων δεκαετιών. Οι διακεκριμένοι επιστήμονες-
ερευνητές του Ευρωπαϊκού Οργανισμού Πυρηνικής Έρευνας (CERN) αναζήτησαν
τα ίχνη του, επί σειρά ετών, με πολλές δυσκολίες και ακόμα μεγαλύτερη
υπομονή στις εγκαταστάσεις του μεγάλου Επιταχυντή Ανδρονίων, μήκους 27
χιλιομέτρων, στη Γενεύη.
Μπορεί να χρειάζονται περαιτέρω διαδικασίες επαλήθευσης προκειμένου
να διασφαλισθεί ότι πρόκειται πραγματικά για το μποζόνιο Higgs, σύμφωνα
με ανακοίνωση του CERN, αλλά η παρούσα ανακάλυψη είναι ήδη πρωτοποριακή
και ανοίγει νέους ορίζοντες στην ιστορία της επιστήμης.
Peter Higgs |
"Είμαι έκπληκτος
από την απίστευτη ταχύτητα με την οποία υπήρξαν αυτά τα
αποτελέσματα...Ποτέ δεν είχα διανοηθεί ότι θα παρακολουθούσα εν ζωή κάτι
τέτοιο και θα ζητήσω από την οικογένειά μου να βάλει τη σαμπάνια να
παγώνει".
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου